

Advanced Reactor Design

Week 11 Bioreactors

Saba A. Gheni, Ph.D. Chemical Engineering Department

ghenis@tu.edu.iq

كلبة الهندسة - COLLEGE OF ENGINEERING

Introduction

- Definition of Bioreactors
- Importance in Biotechnology and Industrial Applications
- Role in Scaling Up Biological Processes
- Real-world Examples (e.g., pharmaceuticals, biofuels, waste treatment)

كلية الصندسة - COLLEGE OF ENGINEERING

Topics to be Covered

- 1. Basics of Bioreactors
- 2. Types of Bioreactors
- 3. Design and Operating Principles
- 4. Factors Affecting Bioreactor Performance
- 5. Applications in Various Industries

كلية الصندسة - COLLEGE OF ENGINEERING

Objectives

- Understand the fundamentals of bioreactors
- Explore different types and their applications
- Learn about key design and operational factors
- Analyze case studies to understand real-world usage

كلية الهندسة - COLLEGE OF ENGINEERING

Review: Nonelementary Reaction Kinetics

Nonelementary reaction kinetics

- No direct correspondence between reaction order and stoichiometry
- Result of multiple elementary reaction steps and reactive intermediates (an intermediate so reactive it is consumed as fast as it is formed)

How do we determine the reaction mechanism?

- 1. Postulate a reaction mechanism that is a series of elementary reactions
- 2. Derive a rate equation for the postulated mechanism
- 3. Determine whether the rate eq for the postulated mechanism consistent with the experimental results. If it is, you're done. If they are not consistent, go back to step 1.

كلبة الهندسة - COLLEGE OF ENGINEERING

Review: Postulating a Reaction Mechanism based on ar Experimentally Observed Rate Law

1. If C_B appears in the denominator of the experimentally observed rate law, then one elementary reaction step is probably:

 $B + A^* \longrightarrow Collision products$ where A^* is a reactive intermediate

2. If the denominator contains a constant (by itself, not multiplied by a concentration), then one reaction step is probably:

 $A^* \longrightarrow Decomposition products$

3. If the numerator contains a species concentration, then one rxn step is probably:

$$C_{\text{species}}[+ \text{ other species}?] \longrightarrow A^{*}[+ \text{ other products}?]$$

Derive a rate equation for the postulated mechanism and check if it describes the experimentally observed rate equation COLLEGE OF ENGINEERINGS- روابع المرابع المرابع (College of Engineering) Tikrit University - جامعة تكريت - Tikrit University

Review: Deriving a Rate Equation for a Postulated Mechanism

طريقك إلى المجا DUR WAY TO SUCCESS

1) Write rate equation for postulated mechanism

 $r_A = (rxns that form A) - (rxns that consume A)$

 $-r_A = -[(rxns that form A) - (rxns that consume A)]$

2) For concentrations of reactive intermediates $C_{l^{\ast}}$ that appear in the rate equation – r_{A}

a) Write out the rate equation for reactive intermediates $r_{l^{\ast}}$

- b) Apply <u>Pseudo-Steady State Hypothesis</u>, which states that the net formation of reactive intermediates is zero $(r_{I*}=0)$
- c) Solve for C_{l^*} in terms of measurable species
- d) Substitute the new expression for C_{I^\ast} in terms of measurable species back into $-r_{A}$

3) Rearrange –r_A to check if it matches the experimentally observed rate equation COLLEGE OF ENGINEERING - كلية الهندسة Tikrit University - جامعة تكريت - عامية تكريت

Review: Free Radical Polymerizations

Review: PSSH Applied to Thermal Cracking of Ethane

The thermal decomposition of ethane to <u>ethylene</u>, methane, butane and hydrogen is believed to proceed in the following sequence:

Initiation:

$$C_2H_6 \xrightarrow{k_1} 2CH_3 \cdot$$
 $-r_{1,C_2H_6} = k_1C_{C_2H_6}$

 Propagation:
 $CH_3 \cdot + C_2H_6 \xrightarrow{k_2} CH_4 + C_2H_5 \cdot$
 $-r_{2,C_2H_6} = k_2C_{CH_3} \cdot C_{C_2H_6}$
 $C_2H_5 \cdot \xrightarrow{k_3} C_2H_4 + H \cdot$
 $r_{3,C_2H_4} = k_3C_{C_2H_5} \cdot$
 $H \cdot + C_2H_6 \xrightarrow{k_4} C_2H_5 \cdot + H_2$
 $-r_{4,C_2H_6} = k_4C_{H_0}C_{C_2H_6}$

 Termination:
 $2C_2H_5 \cdot \xrightarrow{k_5} C_4H_{10}$
 $-r_{5,C_2H_5 \cdot} = k_5(C_{C_2H_5 \cdot})^2$

(a) Use the PSSH to derive a rate law for the rate of formation of ethylene

(b) Compare the PSSH solution in Part (a) to that obtained by solving the complete set of COLLEGE COF EMGENEERING - كلبة الهندسة

Bioreactors

- Today's goals:
 - Predict rates of enzyme-catalyzed reactions
 - Determine effect of chemical inhibitors on rxn rate
 - Develop mathematical expression based on fundamental steps of rxn
 - Apply model to cell growth

- Enzymes: Protein catalyst that execute complex biochemical reactions- all synthetic and degradative reactions in living organisms!
- Increases the rate of reaction <u>without</u> undergoing permanent chemical change – not used up (consumed) by the reaction
- Substrate: the reactant that the enzyme acts on COLLEGE OF ENGINEERING - كلية الهندسة

Enzymes Increase Reaction Rate

- Effects the reaction rate (kinetics), NOT equilibrium (thermo)
- Lower activation energy ΔG^{\ddagger} increases reaction rate, reach equilibrium faster
- ΔG is unchanged, so ratio of products to reactants at equilibrium is the same

Reaction progress \longrightarrow

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Kinetic : $A + B \square C$ k_{-1} $k_{1,cat} > k_{1,uncat}$ ΔG^{\ddagger} determines rxn rate $\Delta G^{\ddagger} = -RT \ln(k)$ Enzymes change ΔG^{\ddagger}

> Thermodynamic: $K = \frac{[C]}{[A][B]} = \frac{k_1}{k_{-1}}$

 $K_{cat} = K_{uncat}$

 ΔG determines equilibrium $\Delta G = -RT \ln(K)$ Enzymes do NOT change ΔG

Michaelis-Menten (M-M) Equation

Vmax

Vmax/2

KM

V_{max}: maximum reaction rate further increases in substrate, S, no longer increase the reaction velocity, v

[S] $v = reaction velocity = r_p = -r_s$

 K_m = substrate concentration where reaction velocity v = $V_{max}/2$ [S] = substrate concentration [P]: product concentration

Empirically found the Michaelis_V = $\frac{V_{max}C_S}{K_m + C_S}$

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Where V_{max} depends on the amount of enzyme

Rate Equation for Enzymatic Reaction

 $v = r_{P} = \frac{V_{max}S}{K_{m} + S}$ Goal: derive this experimentally determined reaction rate to be a substrate source were substrate to be a substrate to

We cannot measure C_{ES} , so we need to get C_{ES} in terms of species we can measure. Start by writing the rate equation for C_{ES} :

$$\frac{dC_{ES}}{dt} = k_1 C_S C_E - (k_{-1} + k_2) C_{ES}$$

The free enzyme concentration C_E is also difficult to measure. Use the mass balance to get C_E in terms of C_{ES} and C_{E0} .

$$\begin{split} C_{E} &= C_{E0} - C_{ES} \quad \text{where } C_{E0} = C_{E,t=0} \\ \text{Substitute into rate eq for } C_{E^{:}} & \rightarrow \frac{dC_{ES}}{dt} = k_1 C_S \left(C_{E0} - C_{ES} \right) - \left(k_{-1} + k_2 \right) C_{ES} \\ \text{COLLEGE OF ENGINEERING - خلبه المنحسة tikrit University - place is a second seco$$

C_{ES} in Measurable Quantities

$$\rightarrow \frac{dC_{ES}}{dt} = k_1 C_S (C_{E0} - C_{ES}) - (k_{-1} + k_2) C_{ES}$$

طريقك إلى اخداح

= 0

d[ES]

dt

Pseudo-steady state assumption: ES is a reactive intermediate, so

$$\frac{dC_{ES}}{dt} = 0 = k_1 C_S (C_{E0} - C_{ES}) - (k_{-1} + k_2) C_{ES} \text{ Now solve for } C_{ES}$$
Multiply out and rearrange $\rightarrow k_- C_{ES} + k_2 C_{ES} = k_1 C_S C_{E0} - k_1 C_S C_{ES}$
Bring C_{ES} to left side of equation $\rightarrow k_- C_{ES} + k_2 C_{ES} + k_1 C_S C_{ES} = k_1 C_S C_{E0}$
Factor out $C_{ES} \rightarrow C_{ES} (k_{-1} + k_2 + k_1 C_S) = k_1 C_S C_{E0}$
Divide by quantity in bracket $\rightarrow C_{ES} = \frac{k_1 C_S C_{E0}}{k_{-1} + k_2 + k_1 C_S}$
Divide top & bottom by $k_1 \rightarrow C_{ES} = \frac{C_S C_{E0}}{k_{-1} + k_2} + C_S$
Plug this expression for C_{ES} into dC_P/dt
COLLEGE OF ENGINEERING - A super states into the supersection of the superse

Derivation of the M-M Equation

جامعة تكريت - Tikrit University

طريقك إلى انجاح NOUR WAY TO SUCCESS

S: substrate E: enzyme $E + S = \bigoplus_{k=1}^{k_1} \bigoplus_{k=1}^{k_2} E + P$ ES: enzyme-substrate complex rate of product formation: $v = r_P = \frac{dC_P}{dt} = k_2C_{ES}$ $\rightarrow C_{ES} = \frac{C_S C_{E0}}{\frac{k_{-1} + k_2}{k_1} + C_S} \quad \begin{array}{l} \text{Plug this expression for} \\ C_{ES} \text{ into } dC_p/dt \end{array}$ $r_{P} = \frac{dC_{P}}{dt} = \frac{k_{2}C_{E0}C_{S}}{\frac{k_{-1}+k_{2}}{k_{2}+C_{S}}} \qquad \begin{array}{c} \text{Compare to} \\ \text{experimentally} \end{array} \quad v = r_{P} = \frac{V_{max}C_{S}}{K_{m}+C_{S}}$ observed rate eq: $V_{max} = k_2 C_{F0}$ When $C_s >> K_m$, then: $r_P = -r_s \approx V_{max}$ V_{max} occurs when enzyme is fully saturated with S (in ES form) When $C_S << K_m$, then: $r_{P} = -r_{S} = \frac{V_{max}C_{S}}{K_{m}}$ $K_m = \frac{k_{-1} + k_2}{k_{-1} + k_2}$ COLLEGE OF ENGINEERING - كلبة الصندسة

Complications with Measuring Rates with the M-M Equation

In practice, V_{max} can be difficult to estimate using the MM equation.

Everyone reported different values of V_{max}. Since a solution with infinite concentration of substrate is impossible to make, a different equation was needed.

Substrate concentration [S]

كلية الهندسة - COLLEGE OF ENGINEERING

Lineweaver-Burk Equation

Lineweaver & Burk inverted

 $r_{P} = \frac{V_{max}C_{S}}{K_{m} + C_{S}}$ the MM equation $\rightarrow \frac{1}{r_{\rm P}} = \frac{K_{\rm m} + C_{\rm S}}{V_{\rm max}C_{\rm S}}$ $\rightarrow \frac{1}{r_{\rm p}} = \left(\frac{K_{\rm m}}{V_{\rm max}}\right) \left(\frac{1}{C_{\rm S}}\right) + \frac{1}{V_{\rm max}}$ 1/V Slope = $\frac{K_{\rm M}}{V_{\rm max}}$ y = (m) (x) + bIntercept = $-1/K_{M}$ By plotting $1/v vs 1/C_{sr}$ a linear plot is obtained: Slope = K_m / V_{max} Intercept = $1/V_{max}$ y-intercept = $1/V_{max}$ x-intercept= $-1/K_m$ لبة الصندسة - COLLEGE OF ENGINEERING 0 1/[S] جامعة تكريت - Tikrit University

Types of Reversible Inhibition

I is the inhibitor

- Binds to active site & blocks substrate binding
- Reduces the C_{Enzvme} available for binding

2. Noncompetitive

ΕI

- Inhibitor binds to some other site
- Does not affect substrate binding

2. Noncompetitive Inhibition

3. Uncompetitive Inhibition

Batch Bioreactor or Fermentor

Kinetics of Microbial Growth (Batch or Semi-Batch)

طريقاك إلى الغجاج HOUR WAY TO SUCCESS

Region 1: Lag phase

- microbes are adjusting to the new substrate
- Region 2: Exponential growth phase
 - microbes have acclimated to the conditions

Region 3: Stationary phase

 limiting substrate or oxygen limits the growth rate

Region 4: Death phase

College OF ENGINEERING - الهندسة exhausted university

Time

Quantifying Growth Kinetics

- Relationship of the specific growth rate to substrate concentration exhibits
 the form of saturation kinetics
- Assume a single chemical species, S, is growth-rate limiting
- Apply Michaelis-Menten kinetics to cellular system→ called the <u>Monod</u> <u>equation</u>

Monod equation:
$$r_g = C_C \frac{\mu_{max}C_S}{K_s + C_S}$$

- $\bullet\,\mu_{\text{max}}$ is the maximum specific growth rate when S>>K_s
- $\bullet C_{\rm S}$ is the substrate concentration
- $\bullet C_{c}$ is the cell concentration
- • K_s is the saturation constant or half-velocity constant. Equals the rate-limiting substrate concentration, S, when the specific growth rate is $\frac{1}{2}$ the maximum
- •Semi-empirical, experimental data fits to equation, assumes that a single enzymatic reaction, and therefore substrate conversion by that enzyme, limits the growth-rate

كلية الهندسة - COLLEGE OF ENGINEERING

Monod Model (1942) – Nobel Prize

Overall balance for cells growing on carbohydrate with products:

Individual elemental balances:

1) Carbon: 1 = c + d + f2) Hydrogen: $m + 3b = c\alpha + dx + 2e$ 3) Oxygen: $n + 2a = c\beta + dy + e + 2f$ 4) Nitrogen: $b = c\delta + dz$ COLLEGE OF ENGINEERING - کلبه الهنديسه Tikrit University - جامعة تكريت

Yield Coefficients

Cell yield
$$Y_{C/O_2} = -\frac{\Delta C}{\Delta O_2}$$
 cell mass formed oxygen consumed

Summary

- Bioreactors are essential in scaling biological processes
- Various types and designs suit different industrial needs
- Understanding operational factors ensures efficiency
- Critical in pharmaceuticals, biofuels, and environmental management

كلبة الهندسة - COLLEGE OF ENGINEERING